Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-Fluoroisophthalic acid

Jin-Ling Mi, Le Chen and Ming-Yang He*

Key Laboratory of Fine Petrochemical Technology, Changzhou University, Changzhou 213164, People's Republic of China
Correspondence e-mail: hemingyangjpu@yahoo.com
Received 18 January 2011; accepted 1 February 2011
Key indicators: single-crystal X-ray study; $T=297 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.041 ; w R$ factor $=0.161$; data-to-parameter ratio $=11.6$.

In the crystal structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{FO}_{4}$, the complete molecule is generated by crystallographic twofold symmetry with two C atoms and the F atom lying on the axis. The molecule is almost planar with the carboxyl group twisted with respect to the mean plane of the benzene ring by a dihedral angle of $2.01(1)^{\circ}$. In the crystal, intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions connect the molecules into a two-dimensional supramolecular array.

Related literature

For isophthalic acid, see: Bhogala et al. (2005); Derissen (1974). For the use of the title compound in crystal engineering, see: Zhang et al. (2010).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{FO}_{4}$
$M_{r}=184.12$

Monoclinic, $P 2_{1} / m$
$a=3.7736$ (8) A
$Z=2$
$b=16.292$ (4) \AA
Mo $K \alpha$ radiation
$c=6.2753(14) \AA$
$\mu=0.14 \mathrm{~mm}^{-1}$
$\beta=91.871(5)^{\circ}$
$V=385.60(14) \AA^{3}$
$T=297 \mathrm{~K}$
$0.22 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.969, T_{\text {max }}=0.979$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 64$ parameters
$w R\left(F^{2}\right)=0.161$
$S=1.04$
743 reflections

2201 measured reflections 743 independent reflections 603 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 1 \cdots \mathrm{O}^{\text {i }}$	0.82	1.81	$2.625(2)$	174
$\mathrm{C} 5-\mathrm{H} 5 \cdots 1^{\text {ii }}$	0.93	2.52	$3.404(2)$	160

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $x-1, y, z+1$.

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge the Jiangsu Province Outstanding Science and Technology Innovation Team and Changzhou University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2002).

References

Bhogala, B. R., Basavoju, S. \& Nangia, A. (2005). CrystEngComm, 7, 551-562. Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Derissen, J. L. (1974). Acta Cryst. B30, 2764-2765.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, Z.-H., Chen, S.-C., Mi, J.-L., He, M.-Y., Chen, Q., Wu, Z.-H. \& Hu, Z.-J. (2010). Inorg. Chem. Commun. 13, 1435-1438.

supplementary materials

Acta Cryst. (2011). E67, o590 [doi:10.1107/S1600536811004004]

5-Fluoroisophthalic acid

J.-L. Mi, L. Chen and M.-Y. He

Comment

As an analogue of isophthalic acid (Bhogala et al. 2005; Derissen, 1974), 5-fluoroisophthalic acid has been seldom used in the crystal engineering of organic or inorganic-organic systems (Zhang et al. 2010). The fluorinated group may participate in hydrogen-bonding and may also induce luminescence properties. Herein we report the crystal structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{FO}_{4}$, to further investigate the supramolecular interactions involving the fluorine atom. The structure of the title compound, is shown below. The molecule presents C_{2} symmetry with the fundamental unit lying on a C_{2}-axis at $[x, 3 / 4, z]$. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions between adjoining centrosymmetry-related carboxylic groups form a hy-drogen-bonded ribbon running along the [010] direction. $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions connect the ribbons into a two-dimensional supramolecular array.

Experimental

5-Fluoroisophthalic acid and solvents for synthesis and analysis were commercially available and used as received. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the methanol solution of the title compound.

Refinement

Benzene H atoms were assigned to calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and refined using a riding model, with $\operatorname{Uiso}(\mathrm{H})$ $=1.2 U \mathrm{eq}(\mathrm{C}) . \mathrm{H}$ atoms bound to carboxylic O atoms were located in difference maps and refined as riding with $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Figures

Fig. 1. The molecular structure of the title compound drawn with 30% probability ellipsoids.

Fig. 2. Two-dimensional hydrogen-bonded layer of the title compound. Hydrogen bonds are indicated as dashed lines.

supplementary materials

5-fluorobenzene-1,3-dicarboxylic acid

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{FO}_{4}$
$M_{r}=184.12$
Monoclinic, $P 2_{1} / m$
Hall symbol: -P 2yb
$a=3.7736$ (8) \AA
$b=16.292$ (4) \AA
$c=6.2753(14) \AA$
$\beta=91.871(5)^{\circ}$
$V=385.60(14) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.969, T_{\text {max }}=0.979$
2201 measured reflections
$F(000)=188$
$D_{\mathrm{x}}=1.586 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1020 reflections
$\theta=2.5-28.0^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Block, colourless
$0.22 \times 0.20 \times 0.15 \mathrm{~mm}$

743 independent reflections
603 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-4 \rightarrow 4$
$k=-17 \rightarrow 19$
$l=-7 \rightarrow 5$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.161$
$S=1.04$
743 reflections
64 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1244 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.16$ e \AA^{-3}
$\Delta \rho_{\min }=-0.15$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds
in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
C1	$0.6268(4)$	$0.59855(9)$	$0.8588(3)$	$0.0524(5)$
C2	$0.7105(4)$	$0.67633(9)$	$0.7484(2)$	$0.0487(5)$
C3	$0.8602(4)$	$0.67563(10)$	$0.5486(3)$	$0.0529(5)$
H3	0.9107	0.6265	0.4806	0.063^{*}
C4	$0.9312(5)$	0.7500	$0.4549(3)$	$0.0540(6)$
C5	$0.6370(5)$	0.7500	$0.8476(3)$	$0.0477(6)$
H5	0.5379	0.7500	0.9813	$0.057 *$
F1	$1.0787(4)$	0.7500	$0.2629(2)$	$0.0744(6)$
O1	$0.7073(4)$	$0.53205(8)$	$0.7622(2)$	$0.0775(6)$
H1	0.6348	0.4905	0.8205	0.116^{*}
O2	$0.4837(4)$	$0.60037(7)$	$1.0328(2)$	$0.0722(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0490(9)$	$0.0612(10)$	$0.0474(10)$	$-0.0023(6)$	$0.0088(7)$	$-0.0080(7)$
C2	$0.0385(8)$	$0.0652(11)$	$0.0424(9)$	$-0.0012(6)$	$0.0022(6)$	$-0.0051(6)$
C3	$0.0420(9)$	$0.0726(12)$	$0.0441(10)$	$-0.0006(6)$	$0.0027(7)$	$-0.0087(7)$
C4	$0.0426(11)$	$0.0852(16)$	$0.0346(11)$	0.000	$0.0069(9)$	0.000
C5	$0.0400(10)$	$0.0642(14)$	$0.0395(11)$	0.000	$0.0072(8)$	0.000
F1	$0.0745(10)$	$0.1105(12)$	$0.0393(8)$	0.000	$0.0190(7)$	0.000
O1	$0.1022(11)$	$0.0610(8)$	$0.0715(10)$	$-0.0050(6)$	$0.0359(8)$	$-0.0121(6)$
O2	$0.0938(10)$	$0.0622(9)$	$0.0628(9)$	$-0.0038(6)$	$0.0355(7)$	$-0.0032(5)$

Geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 2$	$1.235(2)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 1-\mathrm{O} 1$	$1.2826(19)$	$\mathrm{C} 4-\mathrm{F} 1$	$1.343(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.483(2)$	$\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	$1.377(2)$
$\mathrm{C} 2-\mathrm{C} 5$	$1.3841(18)$	$\mathrm{C} 5-\mathrm{C}^{\mathrm{i}}$	$1.3841(19)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.392(2)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.377(2)$	$\mathrm{O} 1-\mathrm{H} 1$	0.8201
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$123.73(15)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	121.1
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$119.91(13)$	$\mathrm{F} 1-\mathrm{C} 4-\mathrm{C} 3$	$118.37(11)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$116.35(15)$	$\mathrm{F} 1-\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	$118.36(11)$
$\mathrm{C} 5-\mathrm{C} 2-\mathrm{C} 3$	$120.34(15)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	$123.3(2)$

supplementary materials

$\mathrm{C} 5-\mathrm{C} 2-\mathrm{C} 1$	$118.83(15)$	$\mathrm{C} 2-\mathrm{C} 5-\mathrm{C} 2^{\mathrm{i}}$	$120.3(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.83(14)$	$\mathrm{C} 2-\mathrm{C} 5-\mathrm{H} 5$	119.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$117.89(16)$	$\mathrm{C} 2 \mathrm{i}-\mathrm{C} 5-\mathrm{H} 5$	119.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	121.1	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1$	113.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	$2.3(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.97(14)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	$-178.51(16)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{F} 1$	$179.40(14)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-177.68(14)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\mathrm{i}}$	$-0.3(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.5(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 5-\mathrm{C} 2^{\mathrm{i}}$	$0.3(3)$
$\mathrm{C} 5-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.0(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5-\mathrm{C}^{\mathrm{i}}$	$-179.72(12)$

Symmetry codes: (i) $x,-y+3 / 2, z$.

Hydrogen-bond geometry ($A,^{\circ}$)

$D — \mathrm{H}^{\cdots} A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.82	1.81	$2.625(2)$	174
$\mathrm{C} 5 — \mathrm{H} 5 \cdots 1^{\mathrm{iii}}$	0.93	2.52	$3.404(2)$	160

Symmetry codes: (ii) $-x+1,-y+1,-z+2$; (iii) $x-1, y, z+1$.

Fig. 1

Fig. 2

